Configuring AI Provider Keys
This page explains how to configure Mito Data Copilot to use your own AI API keys instead of the Mito server.
By default, Mito uses our server to send AI requests to the model provider. If instead you want to use your own AI API keys, you can set the following configuration options.
Available Model Providers
Mito supports the following AI models through environment variables:
OpenAI
Set
OPENAI_API_KEY
to your OpenAI API keyWhen using OpenAI, Mito will automatically use gpt-4.1.
Claude (Anthropic)
Set
CLAUDE_MODEL
to specify the model (e.g., "claude-3-7-sonnet-latest").Set
CLAUDE_API_KEY
to your Anthropic API key
Gemini (Google)
Set
GEMINI_MODEL
to specify the model (eg., "gemini-2.0-flash").Set
GEMINI_API_KEY
to your Google API key
Ollama (Self-hosted)
Set
OLLAMA_MODEL
to specify the modelSet
OLLAMA_BASE_URL
to your Ollama server URL (e.g., "http://localhost:11434/v1")
Azure OpenAI
If you are a Mito Enterprise user, you can configure Mito to use a Azure OpenAI endpoint instead. If you have questions about Mito Enterprise, please contact [email protected].
Set
AZURE_OPENAI_API_KEY
to your Azure OpenAI API keySet
AZURE_OPENAI_API_VERSION
to specify the API versionSet
AZURE_OPENAI_ENDPOINT
to your Azure OpenAI endpoint URLSet
AZURE_OPENAI_MODEL
to specify the deployed model name
Setting Up Environment Variables
Important: Environment variables must be set before launching JupyterLab, as they are read when the Mito server extension initializes during startup.
Method 1: System Environment Variables
Set environment variables at the system level before starting JupyterLab:
On Windows:
set GEMINI_API_KEY=your-api-key-here
set GEMINI_MODEL=gemini-2.0-flash
On macOS/Linux:
export GEMINI_API_KEY=your-api-key-here
export GEMINI_MODEL=gemini-2.0-flash
Method 2: .env File with jupyter_server_config.py
Create a
.env
file in your Jupyter config directory:
GEMINI_API_KEY=your-api-key-here
GEMINI_MODEL=gemini-2.0-flash
Create or modify your
jupyter_server_config.py
file to load these variables on startup:
import os
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv('/path/to/your/.env')
Method 3: Permanent Environment Variables
Add the environment variables to your shell's configuration file for permanent setup:
On Windows:
Add environment variables through System Properties > Environment Variables.
On macOS/Linux:
Add to your .bashrc
, .zshrc
, or equivalent:
export GEMINI_API_KEY=your-api-key-here
export GEMINI_MODEL=gemini-2.0-flash
Data Protection Considerations
Remember that when using external AI providers:
Private data in dataframe names, column headers, or the first five rows of data might be shared with the AI provider
To maximize data protection, Mito Enterprise users can connect to a self-hosted model
Last updated
Was this helpful?