Mito
Mito for Streamlit
  • Mito Documentation
  • Getting Started
    • Installing Mito
      • Fixing Common Install Errors
      • Installing Mito in a Docker Container
      • Installing Mito for Streamlit
      • Installing Mito for Dash
      • Installing Mito in a Jupyter Notebook Directly
      • Installing Mito in Vertex AI
      • Setting Up a Virtual Environment
  • Data Copilot
    • Data Copilot Core Concepts
    • Agent
    • Chat
    • Autocomplete
    • Smart Debugging
    • Configuration Options
    • AI Data Usage FAQ
  • Apps (Beta)
    • Mito Apps
  • Mito Spreadsheet
    • Core Concepts
    • Creating a Mitosheet
      • Open Existing Virtual Environments
    • Importing Data
      • Importing CSV Files
      • Importing from Excel Files
      • Importing Dataframes
      • Importing from a remote drive
      • Import: Generated UI from any Python Function
      • Importing from other sources
    • Graphing
      • Graph Creation
      • Graph Styling
      • Graph Export
    • Pivoting/Group By
    • Filter
      • Filter By Condition
      • Filter By Value
    • Mito AI
    • Summary Statistics
    • Type Changes
    • Spreadsheet Formulas
      • Custom Spreadsheet Functions
      • Formula Reference
      • Using VLOOKUP
    • Editing Individual Cells
    • Combining Dataframes
      • Merge (horizontal)
      • Concatenate (horizontal)
      • Anti-merge (unique)
    • Sort Data
    • Split Text to Columns
    • Deleting Columns
    • Deleting Rows
    • Column Headers
      • Editing Column Headers
      • Promote Row to Header
    • Deduplicate
    • Fill NaN Values
    • Transpose
    • Reset Index
    • Unpivot a Dataframe (Melt)
    • Formatting
      • Column Formatting
      • Dataframe Colors
      • Conditional Formatting
    • Exporting Data
      • Download as CSV
      • Download as Excel
      • Generate code to create Excel and CSV reports
    • Using the Generated Code
      • Turn generated code into functions
    • Changing Imported Data
    • Code Snippets
    • Custom Editors: Autogenerate UI from Any Function
    • Find and Replace
    • Bulk column header edits
    • Code Options
    • Scheduling your Automation
    • Keyboard Shortcuts
    • Upgrading Mito
    • Enterprise Logging
  • Mito for Streamlit
    • Getting Started with Mito for Streamlit
    • Streamlit Overview
    • Create a Mito for Streamlit App
    • API Reference
      • Understanding import_folder
      • RunnableAnalysis class
      • Column Definitions
    • Streamlit App Gallery
    • Experienced Streamlit Users
    • Common Design Patterns
      • Deploying Mito for Streamlit in a Docker Image
      • Using Mito for Final Mile Data Cleaning
  • Mito for Dash
    • Getting Started
    • Dash Overview
    • Your First Dash App with Mito
    • Mito vs. Other Dash Components
    • API Reference
      • Understanding import_folder
    • Dash App Gallery
    • Common Design Patterns
      • Refresh Sheet Data Periodically
      • Change Sheet Data from a Select
      • Filter Other Elements to Data Selected in Mito
      • Graph New Data after Edits to Mito
      • Set Mito Spreadsheet Theme
  • Tutorials
    • Pass a dataframe into Mito
    • Create a line chart of time series data
    • Delete Columns with Missing Values
    • Split a column on delimiter
    • Rerun analysis on new data
    • Calculate the difference between rows
    • Calculate each cell's percent total of column
    • Import multiple tables from one Excel sheet
    • Share Mito Spreadsheets Across Users
  • Misc
    • Release Notes
      • April 15 - Now Streaming (0.1.18)
      • March 21 - Smarter, Faster, Stronger Agents
      • February 25 - Agent Mode QoL Improvements
      • February 18 - Mito Agents
      • January 2nd - Inline Completions Arrive
      • December 6th - Smarter Workflow
      • November 27th - @ Mentions, Mito AI Server
      • November 4th, 2024 - Hello Mito AI
      • October 8, 2024 - JupyterLab 4
      • Aug 29th, 2024
      • June 12, 2024
      • March 19, 2024
      • March 13th, 2024
      • February 12th, 2024: Graphing Improvements
      • January 25th, 2024
      • January 5th, 2023: Keyboard Shortcuts
      • December 6, 2023: New Context Menu
      • November 28, 2023: Mito's New Toolbar
      • November 7, 2023: Multiplayer Dash
      • October 23, 2023: RunnableAnalysis class
      • October 16, 2023: Mito for Dash, Custom Editors
      • September 29, 2023: VLOOKUP and Find and Replace!
      • September 7, 2023
      • August 2, 2023: Mito for Streamlit!
      • July 10, 2023
      • May 31, 2023: Mito AI Recon
      • May 19, 2023: Mito AI Chat!
      • April 27, 2023: Generate Functions, Performance improvements, bulk column header transformations
      • April 18, 2023: Cell Editor Improvements, BYO Large Language Model, and more
      • April 10, 2023: AI Access, Excel-like Cell Editor, Performance Improvements
      • April 5, 2023: Range formulas, Pandas 2.0, Snowflake Views
      • March 29, 2023: Excel Range Import Improvements
      • March 14, 2023: Mito AI, Public Interface Versioning
      • February 28, 2023: In-place Pivot Errors
      • February 7, 2023: Excel-like Formulas, Snowflake Import
      • January 23, 2023: Excel range importing
      • January 8, 2023: Custom Code snippets
      • December 26, 2022: Code snippets and bug fixes
      • December 12, 2022: Group Dates in Pivot Tables, Reduced Dependencies
      • November 15, 2022: Filter in Pivot
      • November 9, 2022: Import and Enterprise Config
      • October 31, 2022: Replay Analysis Improvements
      • Old Release Notes
      • August 10, 2023: Export Formatting to Excel
    • Mito Enterprise Features
    • FAQ
    • Terms of Service
    • Privacy Policy
  • Mito
Powered by GitBook

© Mito

On this page
  • Why Merge Datasets
  • How to Merge Datasets

Was this helpful?

  1. Mito Spreadsheet
  2. Combining Dataframes

Merge (horizontal)

Join the columns of two dataframes together.

PreviousCombining DataframesNextConcatenate (horizontal)

Last updated 1 year ago

Was this helpful?

Why Merge Datasets

Mito's merge functionality can be used to combine datasets together horizontally. Merge looks for matches between the key column of the first sheet and the key column of the second sheet.

Looking to combine datasets vertically by stacking rows on top of each other? You're looking to concatenate. Check out concatenate documentation

Looking to include use VLOOKUP like in Excel? Checkout the VLOOKUP formula documentation .

How to Merge Datasets

Open the Merge Taskpane through the Home tab by clicking Merge > Merge (horizontal. Then, configure the merge taskpane:

  1. Select the Merge Type:

    1. Left Merge: Includes all rows from the first sheet and only matching rows from the second sheet. Includes all matches.

    2. Right Merge: Includes all rows from the second sheet and only matching rows from the first sheet. Includes all matches.

    3. Inner Merge: Only includes rows that have matches in both sheets.

    4. Outer Merge: Includes all rows from both sheets, regardless of if there is a match in the other sheet.

    5. Lookup Merge: Left join, but only includes the first match from the second sheet if there are multiple. Just like a Vlookup in Excel.

    6. Unique in Left: Includes each row from the first sheet that doesn't have a match in the second sheet.

    7. Unique in Right: Includes each row from second sheet that doesn't have a match in the first sheet.

  2. Set the merge keys. These are the keys that must match for the rows to be merged. You can create as many merge keys as you want.

  3. Then, optionally choose which columns from each dataset you want to keep in the final merge dataframe.

here.
here
Opening and configuring a dataframe merge.